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Abstract
This paper investigates wrapped and unwrapped phase differences generated
by a non-Gaussian scattering model: the two-dimensional random walk. Mean
square values for these quantities are obtained for one and two scatterers, as well
as the large scatterer limit when the field constitutes a circular complex Gaussian
process. Numerical simulation is used to investigate the phase under more
general fluctuation conditions, and reveals that the wrapped phase difference
correlation converges rapidly to that result predicted for a Gaussian speckle
field. Analytical results for the unwrapped phase indicate that this quantity
transitions from a stationary process for one and two scatterers to a non-
stationary process in the large scatterer limit. The nature of this transition is
examined using numerical simulation for arbitrary scatterer number. Phase
correlations are of consequence in various phase sensitive detection systems,
and this paper examines both Gaussian and non-Gaussian fields.

PACS numbers: 05.40.Fb, 42.25.Fx

1. Introduction

The coherence properties of scattered radiation are of fundamental physical interest and
influence the performance of various communication and remote sensing systems [1, 2].
Intensity fluctuations and correlations are of principal interest in direct detection systems,
which respond solely to intensity, and a number of results exist for Gaussian as well as non-
Gaussian fields [3, 4]. Phase-sensitive or heterodyne detection systems, however, are also
sensitive to fluctuations in the field’s phase [4, 5]. These are primarily used to detect Doppler
shifts in scattered radiation, and thus determine target velocity and vibration. Phase sensitive
detection has also been used to investigate refractive index fluctuations in the atmosphere [6]. In
comparison to intensity, few results exist for the behaviour of phase beyond the Gaussian limit.
The aim of this paper is to extend investigations into non-Gaussian regimes by considering
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the phase properties of a well-known scattering model, namely the two-dimensional random
walk [7], which returns the scattered field as

E(r̃, t) =
N∑

n=1

an(r̃, t) exp[iθn(r̃, t)] exp(iωt) =
√

I (r̃, t) exp[iφ(r̃, t)] exp(iωt), (1)

where the ans are real scattering amplitudes, the θns are independent scatterer phase shifts and
ω is the radiation frequency whose dependence we shall suppress. While the phase shifts θ

can vary without bound in direct proportion to the distance between scatterers and detector, the
complex exponentials in the above sum effectively confine the phase φ of the resultant field
to a 2π range, conveniently taken to be [−π, π); we will refer to this as the field’s wrapped
phase. However, when a sequence of measurements is made the phase may be unwrapped so
that it extends outside the 2π range.

Many phase sensitive instruments operate by comparing field measurements obtained
at different times, frequencies or spatial locations, e.g., interferometers typically output the
product of field values E(t2)E

∗(t1) = √
I2I1 exp[i(φ2 − φ1)] [8, 9]. While the difference

(φ2 − φ1) can vary over [−2π, 2π), the phase returned from the instrument is the phase of
E(t2)E

∗(t1), which is confined to [−π, π) and will be referred to as the field’s wrapped phase
difference ϕ2π (τ ). This quantity can also be visualized as the angle between field vectors
E(t1) and E(t2) in the complex plane. For some applications, however, the phase needs to be
unwrapped, e.g. in measurements of refractive index variations when the optical path length
changes by more than a wavelength. Consideration of the field rotation between times t1 and
t2 allows one to define an unwrapped phase difference

ϕ(τ) = ϑ(t2) − ϑ(t1) =
∫ t2

t1

dφ(t ′)
dt ′

dt ′, (2)

where dφ(t ′)/dt ′ is the phase derivative at intervening times, ϑ(t) is an unwrapped phase value
and τ = t2 − t1. The statistical properties of the wrapped phase may differ considerably from
those of the unwrapped phase. For example, the wrapped phase of a circular complex Gaussian
field constitutes a stationary process, whereas the unwrapped phase is a non-stationary process
with divergent variance. However, unwrapped phase fluctuations can be characterized by their
mean square phase difference, or structure function, which can be obtained from (2) provided
that the scattered field is once differentiable [10, 11]. In this paper we therefore focus our
attention on the mean square properties of wrapped and unwrapped phase differences returned
from the two-dimensional random walk scattering model (1). A correlation function follows
immediately in the case of wrapped phase, which remains stationary, though not necessarily
unwrapped phase since this quantity can become non-stationary.

2. Wrapped phase differences

The simplest field generated by the random walk scattering model (1) is that returned from a
single scatterer. Assuming that the scattering amplitude a is fixed, the detected fields wrapped
phase φ will be equivalent to the single scatterer’s wrapped phase shift. In this paper we shall
adopt a jointly-Gaussian model for the scatterer phase shifts θ [4]

p(θ(t2), θ(t1)) = 1

2π〈θ2〉
√

1 − ρ2
θ (τ )

exp

{
− [θ2(t2) + θ2(t1) − 2θ(t2)θ(t1)ρθ (τ )]

2〈θ2〉(1 − ρ2
θ (τ ))

}
, (3)

where ρθ (τ ) = 〈θ(t2)θ(t1)〉/〈θ2〉 is the scatterer phase shift correlation function. The detected
field’s wrapped phase difference density in the single scatterer case can be evaluated from (3)
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Figure 1. Mean square wrapped phase difference from 1 scatterer (dashed line), 3 scatterers
(circles representing simulation results) and the large scatterer number Gaussian limit (solid line).

by changing to sum and differences coordinates and reducing the difference density modulo-2π

[12], resulting in

p(ϕ2π (τ ))N=1 = 1

2π

{
1 + 2

∑∞
k=1

exp[−k2〈θ2〉(1 − ρθ (τ ))] cos[kϕ2π (τ )]
}

. (4)

Given an arbitrary wrapped phase difference density p(ϕ2π (τ )), its associated mean
square wrapped phase difference follows by evaluating

〈[ϕ2π (τ )]2〉 =
∫ π

−π

ϕ2
2π (τ )p(ϕ2π (τ ))d[ϕ2π (τ )], (5)

which returns the mean square wrapped phase difference from a single scatterer

〈[ϕ2π (τ )]2〉N=1 = π2

3
+ 4

∑∞
k=1

(−1)k

k2
exp[−k2〈θ2〉(1 − ρθ (τ ))]. (6)

While this result applies for arbitrary scatterer phase shift variance 〈θ2〉, in this paper we
are most interested in scattering systems that give rise to unbiased two-dimensional random
walks. This condition is usually taken to be met when 〈θ2〉 > 10, corresponding to scattering
centres whose motions exceed the radiation wavelength. The above result (6) is plotted in
figure 1 and can be seen to approximate π2/3 at large separation times, corresponding to
wrapped phase differences that are uniformly distributed on [−π, π). For small separation
times ρθ (τ ) can be replaced by its Maclaurin series expansion ρθ (τ ) ≈ 1 − τ 2|ρ̈θ (0)|/2 + · · ·,
then (6) approximates 〈θ2〉|ρ̈θ (0)|τ 2.

Wrapped phase differences can also be evaluated from the field scattered by two scatterers
with phase shifts θ1 and θ2. It was previously shown that when the scattering amplitudes are
fixed and equal the detected fields phase derivative is φ̇ = (θ̇1 + θ̇2)/2 [12], whose variance is
half that of a single scatterer. The detected field’s unwrapped phase follows as ϑ = (θ1 + θ2)/2,
where we have ignored constants of integration since they have no effect when evaluating phase
differences. A double scatterer wrapped phase difference result can then be developed in the
same manner as the above single scatterer result. However, as discussed in [12] the case of two
scatterers with equal scattering amplitudes a is somewhat idealistic. In the following section
we shall consider the case when the two scatterers have unequal scattering amplitudes.
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Analytical difficulties arise when attempting to evaluate wrapped phase differences from
fields scattered by three or more scatterers. However, results can be obtained for a large
number, i.e. N → ∞, of statistically independent and identical scatterers, when the scattered
field is known to constitute a circular complex Gaussian process. It can be shown that the
mean square wrapped phase difference is then given by [9]

〈[ϕ2π (τ )]2〉N→∞ = π2

3
− π sin−1[g(τ)] + (sin−1[g(τ)])2 − 1

2

∑∞
k=1

g2k(τ )

k2
, (7)

where g(τ) = 〈E(t2)E
∗(t1)〉/〈|E|2〉 = exp(−〈θ2〉[1 − ρθ (τ )]) is the appropriate field

correlation function. This result saturates to π2/3 over large separation times, and can be
approximated by −|g̈(0)|τ 2 ln[τ ] in the small separation time limit. As shown in figure 1 this
rises more sharply than the corresponding result for a single scatterer (6), a consequence of
the large phase fluctuations that manifest in complex Gaussian fields.

Results for three and more scatterers can be obtained using the numerical simulation
techniques described in [11, 12]. All graphical results presented in this paper were generated
using a Gaussian phase shift correlation function ρθ (τ ) = exp(−τ 2/ξ 2), phase shift variance
〈θ2〉 = 100 and correlation length ξ = 200. As shown in figure 1, the simulated result for
three equal scatterers deviates slightly from that of a circular complex Gaussian field at small
separation times. However, for four or more scatterers simulation results are found to be
essentially identical those of a circular complex Gaussian field, indicating that the wrapped
phase difference correlation converges rapidly with increasing scatterer number to that of
Gaussian speckle.

3. Unwrapped phase differences

When only one scatterer is present the field’s unwrapped phase is equivalent to the scatterer
phase shift, and so the mean square unwrapped phase difference is 2〈θ2〉(1 − ρθ (τ )). In the
small separation time limit this unwrapped result is identical to (6), a consequence of the fact
that the modulus of the unwrapped phase difference remains less than π , and so the wrapped
phase never actually wraps.

Given that the unwrapped phase from two identical scatterers is half the sum of their
individual phase shifts, the corresponding mean square unwrapped phase difference is half
the single scatterer result. However, the case of two scatterers with exactly equal scattering
amplitudes is a special one. Interference between two such scatterers can only produce field
zeros and not fields that pass through and encircle the origin in the complex plane. In practice,
however, any difference in the scattering amplitudes will cause the resultant field to encircle
the origin. Following from [12], for two scatterers of scattering amplitude unity and r > 1 the
detected field’s phase derivative can be shown to be

φ̇ = θ̇2 + (θ̇1 − θ̇2)
1 + r cos[θ2 − θ1]

1 + r2 + 2r cos[θ2 − θ1]
= θ̇2 − d

dt

{
tan−1

[
sin[θ2 − θ1]

r + cos[θ2 − θ1]

]}
, (8)

whose variance is 〈φ̇2〉 = 〈θ̇2〉r2/(r2 − 1) when [θ2 − θ1] reduced modulo-2π is uniformly
distributed. The corresponding unwrapped phase follows as

ϑ = θ2 − tan−1

[
sin[θ2 − θ1]

r + cos[θ2 − θ1]

]
, (9)

where we have again ignored constants of integration. The second term on the right-hand
side corresponds to the phase of a complex quantity with components X = (r + cos[θ2 − θ1])
and Y = sin[θ2 − θ1], which can be visualized as a unit phasor rotating around the point
{x = r > 1, y = 0}. Recognizing that the phasor tip rotates only in the positive half-plane,
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Figure 2. Realizations of unwrapped phase from 2 (dashed line), 3 (lower solid line) and 10 (upper
solid line) scatterers.

its phase contribution to (9) cannot exceed ±π/2. For phase shift variances 〈θ2〉 > 10 the
scatterer phase shift θ2 will therefore dominate the detected field’s unwrapped phase ϑ , and
so we conclude that the mean square unwrapped phase difference from two unequal scatterers
will approximate that of a single scatterer.

Analytical difficulties also arise when evaluating unwrapped phase differences from three
or more scatterers. Results can, however, be obtained in the large scatterer Gaussian limit
using the result [10, 11]

〈[ϕ(τ)]2〉 = 2
∫ τ

0
(τ − t)ρφ̇(t) dt, (10)

where ρφ̇(t) = 〈(dφ(t ′)/dt ′)(dφ(t ′′)/dt ′′)〉 is the phase derivative correlation function, and
Rice’s result for a circular complex Gaussian process [13]

ρφ̇(t) = 1

2

g(t)g̈(t) − ġ(t)2

g2(t)
ln[1 − g2(t)]. (11)

Inserting the appropriate field correlation function obtains

〈[ϕ(τ)]2〉N→∞ = 〈θ2〉
∫ τ

0
(τ − t)ρ̈θ (t) ln[1 − exp(−2〈θ2〉[1 − ρθ (t)])] dt, (12)

which for large separation times and 〈θ2〉 > 10 can be shown to approximate

〈[ϕ(τ)]2〉N→∞ =
√

π〈θ2〉|ρ̈θ (0)|
2

ς(3/2)τ − π2

12
τ → ∞, (13)

where ς(n) is the Riemann-zeta function [14]. While the unwrapped phase of one and two
scatterers remain stationary, this result indicates that the unwrapped phase in the large scatterer
number Gaussian limit constitutes a non-stationary process. The small time limit to (12) can
be shown to agree with the corresponding wrapped phase result (7).

The nature of the non-stationary transition that occurs between 2 and a large number
of scatterers can be investigated using the numerical simulation technique. Figure 2 plots
individual unwrapped phase realizations from 2, 3 and 10 scatterers, which shows that the
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Figure 3. Simulation results for the mean square wrapped phase difference from 3 (triangles), 4
(squares), 10 (diamonds) and 50 (circles) scatterers. The solid line is the analytical prediction of a
Gaussian speckle field.

unwrapped phase from 3 and 10 scatterers undergoes a large number of abrupt phase changes.
Figure 3 plots mean square unwrapped phase differences from 3, 4, 10 and 50 scatterers,
demonstrating that the unwrapped phase from three and more scatterers constitute non-
stationary processes. It is also apparent that, as the number of scatterers is increased, the
mean square unwrapped phase differences converge much more slowly to the Gaussian limit
than the corresponding wrapped results shown in figure 1.

4. Discussion and conclusions

In this paper, we investigated wrapped and unwrapped phase differences generated by a
two-dimensional random walk arising from wave scattering by N discrete scatterers. The
unwrapped phase was found to be more sensitive to scatterer number than wrapped phase.
Indeed, a major change is found to occur when N increases from two to three: the unwrapped
phase transitions from a stationary process for one and two scatterers, to a non-stationary
process for three or more scatterers. The transition to non-stationary behaviour that takes
place between two and three scatterers can be understood by considering the case of two
unequal scatterers. It was shown that the unwrapped phase of the field scattered from two
unequal scatterers (9) is equal to one of their phase shifts θ2 plus the phase contribution from a
unit phasor rotating around the point {x = r > 1, y = 0}, which is bounded on [−π/2, π/2).
Thus if θ2 is stationary, so is the unwrapped phase. From this context one can see that if the
length of this second phasor is allowed to vary randomly beyond unity, so that it can rotate
into the negative half-plane and around the origin, the unwrapped phase will undergo large
random phase jumps in addition to the phase change from the scatterer phase shift θ2. It is
these additional random phase changes that result in the phase transitioning to a non-stationary
process and becoming equivalent to a one-dimensional random walk with uncorrelated steps.
As seen in figure 2, this is what happens in the field scattered from three scatterers, which is
equivalent to one phasor of fixed length and a second phasor whose length varies randomly as
the sum of two scattered contributions. The same argument applies to four or more scatterers.



Wrapped and unwrapped phase of radiation scattered by a discrete number of particles 4995

While the results of this paper are directly applicable to scattering from discrete points,
they also provide insights into more general scattering situations. In waves propagating through
random media, or scattered from rough surfaces, the scattered field is often represented as
the vector addition of a coherent component and an incoherent or scattered contribution.
The generality of the above argument suggests that whenever the magnitude of the randomly
varying scattered contribution has a finite probability of exceeding the coherent component,
the resultant field’s unwrapped phase will constitute a non-stationary process. Such conditions
are met by the familiar Rice, homodyned-K and generalized-K models, commonly adopted
scattering models that reduce to the circular complex Gaussian and K-processes in the
appropriate limit [15].
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